
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP010922
TITLE: The Riemann Non-Differentiable Function
and Identities for the Gaussian Sums

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

ITLE: Paradigms of Complexity. Fractals and

Structures in the Sciences

To order the complete compilation report, use: ADA392358

The component part is provided here to allow users access to individually authored sections

f proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010895 thru ADP010929

UNCLASSIFIED



293

THE RIEMANN NON-DIFFERENTIABLE FUNCTION AND

IDENTITIES FOR THE GAUSSIAN SUMS

B. T. MATKARIMOV

Institute of Mathematics, Pushkin str. 125, Almaty 480100, Kazakstan
E-mail: matkarimov@itte.kz

Riemann's example of a continuous, non-differentiable function is given by the sum

Z1=1 sin(n 2x)/n 2 . This function is sufficiently irregular and its graph is fractal.

Hardy proved 1 that Riemann's non-differentiable function is not differentiable at

any irrational point because of a square root singularity at these points. Careful

investigation of the differentiability of Riemann's non-differentiable function was

carried out by Gerver, who showed 2 that this function has derivative equal to -1/2

at every rational point of a special type (forming the orbit of the point 1 under the
theta-modular group3 ). Different proofs of this surprising fact was given by other
authors3,', 5 , providing also a close relation between Riemann's non-differentiable
function and classical 0-function and Gauss sums. Duistermaat obtained 3 an exact

functional equations for this function under transformations of the theta-modular
group. In this article we use functional equations for Riemann's non-differentiable

function under theta-modular transformations to derive functional equations on

Gauss sums generalizing Genocci-Schaar identity.
A Gauss sum is a sum of the form

q-1

S(p, q) = E exp(irin 2p/q),
n=O

where p and q are relatively prime integers of opposite parity, i.e. one is odd and

the other is even. The Genocci-Schaar identity on Gauss sums is the following: for
positive integers p and q of opposite parity,

I q-1 2 exp(7ri/4) p-12
- • exp(irin 2p/q) - e i • exp(-irin2 q/p).

V.nO= n=O

This identity can be interpreted as the transformation of the Gauss sum under the

change o : z - -11z where z = p/q.
The modular group r is a group of fractional linear transformations -Y : z -*

(az + b)/(cz + d) where a, b, c, d E Z and ad - bc = 1. Theta-modular group Fe is
a sub-group of modular group generated by the following mappings: r : z --* z + 2
and a : z --* -1/z. For any element of the theta-modular group the following are

valid: ab = 0 (mod 2) and cd = 0 (mod 2). Every fractional transformation "y E r.
has a simple pole at the point z = -d/c. The rational points x = p/q with integers

p, q of opposite parity and infinity constitute theta-modular orbit of point 0.
Riemann's non-differentiable function has the following local estimations at the

point x: f(x ± c) = f(x) + R±cJ , where 0 < 3 < 1. Using the functional equations
for f(x) it is possible to find functional equations on the functions R± . These

functions are known only at the rational points, where they coincide with the Gauss
sums. The following theorems describe these functional equations:
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Theorem: Let r and s be integers of which one is even and the other is odd,
and s is positive, -y E FO be an element of the theta-modular group Y : z --ý
(az +,b)/(cz + d), and suppose c is positive and cr + ds # 0. Define r = ar + bs
and s = cr + ds. Then the following formula for Gauss sums is valid:

exp(7riSign(s')/4) S(r', s') 1 S(d )=1 S(r, 8) (1)

Proof: The proof is based on the differentiability properties of Riemann's
non-differentiable function. Let us consider the following function O(z) =

Y0=1 exp(7rin'z)/irin 2 . Using technique of papers 4,5 we calculate the following
estimation for the function O(z) at the point x = u/v, where u and v are relatively
prime integers of opposite parity, (u, v) = 1 and uv = 0 (mod 2):

+00

O(x + h2 ) - O(x - h 2 ) = h2 E exp(7rin 2 x)W(nh) - h = (2)
n=-co

IV!-1 +00

h2 1 exp (irit 2 x) 1 P(klvlh + th) - h2 = 21/ 2 S(u, v)h/lvj + O(h2 ).
t=O k=-00

Here o(x) = sin(7rx2)/7rx 2 if X # 0 and V(x) = 1 if x = 0, and we write n =

kIvI + t, (0 < t < IvI) and use that exp(7rinr2 x) = exp(7rit 2x), since uv = 0 (mod 2).
The function O(z) obey a functional equation under the action of theta-modular
group3 . Let -Y E Fo be an element of theta modular group, then the function

-(z) = O(z) - -'(z)-l1uy(z)O(7y(z)) is differentiable, and analytical function p.- is
given by:

I-y (Z) = e(,i/4)c-1(z + d/c) -/ 2S(-d, c). (3)

Eq. (2) is valid for any point of theta-modular orbit of x = r/s, except infinity.
Calculating estimation (2) for the differentiable function b(x) at the point x = r/s
and supposing y(r/s) 5 oo, we find that

S(r, 8) _ ,y,(r/s)_-/2A,,(r/s) S(ar I bs,cr + ds) = . (4)

Note, that r' = ar + bs and s' = cr + ds are relatively prime integers. Substituting
the expression of ,y(z) in terms of Gauss sums (Eq. 3) we obtain the desired result.

Q.E.D
The Genocci-Schaar identity corresponds to the case of a = 0, b = -1, c = 1 and
d = 0. Functional equation (Eq. 1) describe the theta-modular transformations of
Gauss sums and can be used to derive the values of the Gauss sums.
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